Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The sacred datura plant (Solanales: Solanaceae:Datura wrightii) has been used to study plant–herbivore interactions for decades. The wealth of information that has resulted leads it to have potential as a model system for studying the ecological and evolutionary genomics of these interactions. We present a de novoDatura wrightiigenome assembled using PacBio HiFi long-reads. Our assembly is highly complete and contiguous (N50 = 179Mb, BUSCO Complete = 97.6%). We successfully detected a previously documented ancient whole genome duplication using our assembly and have classified the gene duplication history that generated its coding sequence content. We use it as the basis for a genome-guided differential expression analysis to identify the induced responses of this plant to one of its specialized herbivores (Coleoptera: Chrysomelidae:Lema daturaphila). We find over 3000 differentially expressed genes associated with herbivory and that elevated expression levels of over 200 genes last for several days. We also combined our analyses to determine the role that different gene duplication categories have played in the evolution ofDatura-herbivore interactions. We find that tandem duplications have expanded multiple functional groups of herbivore responsive genes with defensive functions, including UGT-glycosyltranserases, oxidoreductase enzymes, and peptidase inhibitors. Overall, our results expand our knowledge of herbivore-induced plant transcriptional responses and the evolutionary history of the underlying herbivore-response genes.more » « less
-
Plant–herbivore and plant–pollinator interactions are both well-studied, but largely independent of each other. It has become increasingly recognized, however, that pollination and herbivory interact extensively in nature, with consequences for plant fitness. Here, we explore the idea that trade-offs in investment in insect flight and reproduction may be a mechanistic link between pollination and herbivory. We first provide a general background on trade-offs between flight and fecundity in insects. We then focus on Lepidoptera; larvae are generally herbivores while most adults are pollinators, making them ideal to study these links. Increased allocation of resources to flight, we argue, potentially increases a Lepidopteran insect pollinator’s efficiency, resulting in higher plant fitness. In contrast, allocation of resources to reproduction in the same insect species reduces plant fitness, because it leads to an increase in herbivore population size. We examine the sequence of resource pools available to herbivorous Lepidopteran larvae (maternally provided nutrients to the eggs, as well as leaf tissue), and to adults (nectar and nuptial gifts provided by the males to the females), which potentially are pollinators. Last, we discuss how subsequent acquisition and allocation of resources from these pools may alter flight–fecundity trade-offs, with concomitant effects both on pollinator performance and the performance of larval herbivores in the next generation. Allocation decisions at different times during ontogeny translate into costs of herbivory and/or benefits of pollination for plants, mechanistically linking herbivory and pollination.more » « less
-
Phenological shifts are a widely studied consequence of climate change. Little is known, however, about certain critical phenological events, nor about mechanistic links between shifts in different life-history stages of the same organism. Among angiosperms, flowering times have been observed to advance with climate change, but, whether fruiting times shift as a direct consequence of shifting flowering times, or respond differently or not at all to climate change, is poorly understood. Yet, shifts in fruiting could alter species interactions, including by disrupting seed dispersal mutualisms. In the absence of long-term data on fruiting phenology, but given extensive data on flowering, we argue that an understanding of whether flowering and fruiting are tightly linked or respond independently to environmental change can significantly advance our understanding of how fruiting phenologies will respond to warming climates. Through a case study of biotically and abiotically dispersed plants, we present evidence for a potential functional link between the timing of flowering and fruiting. We then propose general mechanisms for how flowering and fruiting life history stages could be functionally linked or independently driven by external factors, and we use our case study species and phenological responses to distinguish among proposed mechanisms in a real-world framework. Finally, we identify research directions that could elucidate which of these mechanisms drive the timing between subsequent life stages. Understanding how fruiting phenology is altered by climate change is essential for all plant species but is particularly critical to sustaining the large numbers of plant species that rely on animal-mediated dispersal, as well as the animals that rely on fruit for sustenance.more » « less
-
Evison, Sophie (Ed.)1. Precise pollen placement on floral visitors can improve pollen transfer, but in many plant species, pollen is deposited onto the flexible proboscises of long-tongued insects. These proboscises are curled and uncurled between floral visits, potentially causing pollen to be lost or displaced. Rates of pollen movement and loss resulting from proboscis curling, and hence the potential quality of long-tongued insects as pollinators, are unknown. 2. Here, pollen loss and movement on the proboscises of Manduca sexta (Sphingidae) hawkmoths was experimentally measured. It was predicted that (i) proboscis curling causes pollen loss; (ii) pollen that is not lost is displaced from its deposition site; and (iii) repeated curls result in more displacement. Pollen from Datura wrightii, an important nectar plant for M. sexta, was placed distal to the knee bend on M. sexta proboscises, and the number and location of grains was recorded after proboscis curls. 3. Consistent with the hypotheses, proboscis curling caused significant pollen loss. (i) A single curl resulted in the loss of almost 75% of the pollen from the placement site; after repeated curling, 98% of grains were lost from this site. (ii) A single curl was also sufficient to displace pollen across all surfaces of the proboscis, but (iii) further curling did not affect its distribution across surfaces. 4. Together, these results suggest that precise pollen placement on the proboscises of hawkmoths would be unlikely to increase pollen transfer success. Strategies by which flowering plants might mitigate the effects of pollen loss from visitors with flexible pollen-pickup structures are discussed.more » « less
-
Abstract Understanding mechanisms that generate range limits is central to knowing why species are found where they are and how they will respond to environmental change. There is growing awareness that biotic interactions play an important role in generating range limits. However, current theory and data overwhelmingly focus on abiotic drivers and antagonistic interactions. Here we explore the effect that mutualists have on their partner's range limits: the geographic “footprint” of mutualism. This footprint arises from two general processes: modification of a partner's niche through environment‐dependent fitness effects and, for a subset of mutualisms, dispersal opportunities that lead suitable habitats to be filled. We developed a conceptual framework that organizes different footprints of mutualism and the underlying mechanisms that shape them, and evaluated supporting empirical evidence from the primary literature. In the available literature, we found that the fitness benefits and dispersal opportunities provided by mutualism can extend species' ranges; conversely, the absence of mutualism can constrain species from otherwise suitable regions of their range. Most studies found that the footprint of mutualism is driven by changes in the frequency of mutualist partners from range core to range edge, whereas fewer found changes in interaction outcomes, the diversity of partners, or varying sensitivities of fitness to the effects of mutualists. We discuss these findings with respect to specialization, dependence, and intimacy of mutualism. Much remains unknown about the geographic footprint of mutualisms, leaving fruitful areas for future work. A particularly important future direction is to explore the role of mutualism during range shifts under global change, including the promotion of shifts at leading edges and persistence at trailing edges.more » « less
-
Parasitic plants often attack multiple host species with unique defenses, physiology, and ecology. Reproductive phenology and vectors of parasitic plant genes (pollinators and dispersers) can contribute to or erode reproductive isolation of populations infecting different host species. We asked whether desert mistletoe, Phoradendron californicum (Santalaceae tribe Visceae syn. Viscaceae), differs ecologically across its dominant leguminous hosts in ways affecting reproductive isolation. Parasite flowering phenology on one host species (velvet mesquite, Prosopis velutina) differed significantly from that on four others, and phenology was not predicted by host species phenology or host individual. Comparing mistletoe populations on mesquite and another common host species (catclaw acacia, Senegalia greggii) for which genetically distinct host races are known, we tested for differences in interactions with vectors by quantifying pollinator visitation, reward production, pollen receipt, and fruit consumption. Mistletoes on mesquite produced more pollinator rewards per flower (1.86 times the nectar and 1.92 times the pollen) and received ~ 2 more pollen grains per flower than those on acacia. Mistletoes on the two host species interacted with distinct but overlapping pollinator communities, and pollinator taxa differed in visitation according to host species. Yet, mistletoes of neither host showed uniformly greater reproductive success. Fruit set (0.70) did not differ by host, and the rates of fruit ripening and removal differed in contrasting ways. Altogether, we estimate strong but asymmetric pre-zygotic isolating barriers between mistletoes on the two hosts. These host-associated differences in reproduction have implications for interactions with mutualist vectors and population genetic structure.more » « less
-
McConkey, Kim (Ed.)Abstract Although dispersal is generally viewed as a crucial determinant for the fitness of any organism, our understanding of its role in the persistence and spread of plant populations remains incomplete. Generalizing and predicting dispersal processes are challenging due to context dependence of seed dispersal, environmental heterogeneity and interdependent processes occurring over multiple spatial and temporal scales. Current population models often use simple phenomenological descriptions of dispersal processes, limiting their ability to examine the role of population persistence and spread, especially under global change. To move seed dispersal ecology forward, we need to evaluate the impact of any single seed dispersal event within the full spatial and temporal context of a plant’s life history and environmental variability that ultimately influences a population’s ability to persist and spread. In this perspective, we provide guidance on integrating empirical and theoretical approaches that account for the context dependency of seed dispersal to improve our ability to generalize and predict the consequences of dispersal, and its anthropogenic alteration, across systems. We synthesize suitable theoretical frameworks for this work and discuss concepts, approaches and available data from diverse subdisciplines to help operationalize concepts, highlight recent breakthroughs across research areas and discuss ongoing challenges and open questions. We address knowledge gaps in the movement ecology of seeds and the integration of dispersal and demography that could benefit from such a synthesis. With an interdisciplinary perspective, we will be able to better understand how global change will impact seed dispersal processes, and potential cascading effects on plant population persistence, spread and biodiversity.more » « less
An official website of the United States government
